L2ID@CVPR 2021 Accepted paper list

Back to L2ID HomePage

Paper Title Authors
[1] ReMP: Rectified Metric Propagation for Few-Shot Learning Yang Zhao (University at Buffalo)*; Chunyuan Li (Microsoft Research, Redmond); Ping Yu (University at Buffalo); Changyou Chen (University at Buffalo)
[2] DAMSL: Domain Agnostic Meta Score-based Learning John Cai (Princeton University)*; Bill Cai (Massachusetts Institute of Technology); Shengmei Shen (Pensees AI institute of Singapore)
[3] Unsupervised Discriminative Embedding for Sub-Action Learning in Complex Activities Sirnam Swetha (University of Central Florida)*; Hilde Kuehne (University of Frankfurt); Yogesh Rawat (University of Central Florida); Mubarak Shah (University of Central Florida)
[4] One-Shot GAN: Learning to Generate Samples from Single Images and Videos Vadim Sushko (Bosch Center for Artificial Intelligence)*; Jürgen Gall (University of Bonn); Anna Khoreva (Bosch Center for Artificial Intelligence)
[5] Efficacy of Bayesian Neural Networks in Active Learning Vineeth Rakesh (Interdigital AI Lab)*; Swayambhoo Jain (Interdigital AI Lab)
[6] ProFeat: Unsupervised Image Clustering via Progressive Feature Refinement Jeonghoon Kim (DGIST)*; Sunghoon Im (DGIST); Sunghyun Cho (POSTECH)
[7] Rethinking Ensemble-Distillation for Semantic Segmentation Based Unsupervised Domain Adaption Chen-Hao Chao (National Tsing Hua University)*; Bo-Wun Cheng (National Tsing Hua University); Chun-Yi Lee (National Tsing Hua University)
[8] Learning from Incomplete Features by Simultaneous Training of Neural Networks and Sparse Coding Cesar Caiafa (CONICET/RIKEN AIP)*; Ziyao Wang (Southeast University); Jordi Solé-Casals (University of Vic–Central University of Catalonia); Qibin Zhao (RIKEN AIP)
[9] Training Deep Generative Models in Highly Incomplete Data Scenarios with Prior Regularization Edgar A Bernal (University of Rochester)*
[10] Unlocking the Full Potential of Small Data with Diverse Supervision Ziqi Pang (Peking University); Zhiyuan Hu (Tsinghua University)*; Pavel Tokmakov (Toyota Research Institute); Yu-Xiong Wang (University of Illinois at Urbana-Champaign); Martial Hebert (Carnegie Mellon School of Computer Science)
[11] BalaGAN: Cross-Modal Image Translation Between Imbalanced Domains Or Patashnik (Tel Aviv University)*; Dov Danon (Tel Aviv University); Hao Zhang (Simon Fraser University); Danny Cohen-Or (Tel Aviv University)
[12] Shot in the Dark: Few-Shot Learning with No Base-Class Labels Zitian Chen (University of Massachusetts, Amherst)*; Subhransu Maji (University of Massachusetts, Amherst); Erik Learned-Miller (University of Massachusetts, Amherst)
[13] Adversarial Open Domain Adaption for Sketch-to-Photo Synthesis Xiaoyu Xiang (Purdue University)*; Ding Liu (Bytedance); Xiaohui Shen (ByteDance AI Lab); Yiheng Zhu (ByteDance AI Lab); Xiao Yang (Bytedance AI Lab); Jan Allebach (Purdue University)
[14] Distill on the Go: Online knowledge distillation in self supervised learning Prashant Bhat (Advanced Research Lab, NavInfo Europe)*; Elahe Arani (Navinfo Europe ); Bahram Zonooz (Navinfo Europe)
[15] Boosting Co-teaching with Compression Regularization for Label Noise Yingyi Chen (KU Leuven)*; Xi Shen (École des Ponts ParisTech); Shell X Hu (Upload AI LLC); Johan Suykens (KU Leuven)
[16] Instance-Level Task Parameters: A Robust Multi-task Weighting Framework Pavan Kumar Anasosalu Vasu (Apple Inc.)*; Shreyas Saxena (Apple Inc.); Oncel Tuzel (Apple Inc.)
[17] A Closer Look at Self-training for Zero-Label Semantic Segmentation Giuseppe Pastore (Politecnico di Torino)*; Fabio Cermelli (Politecnico di Torino); Yongqin Xian (Max Planck Institute Informatics); Massimiliano Mancini (University of Tübingen); Zeynep Akata (University of Tübingen); Barbara Caputo (Politecnico di Torino)
[18] Contrastive Learning Improves Model Robustness Under Label Noise Aritra Ghosh (University of Massachusetts Amherst)*; Andrew Lan (University of Massachusetts Amherst)
[19] A Simple Framework for Cross-Domain Few-Shot Recognition with Unlabeled Data Ashraful Islam (Rensselaer Polytechnic Institute)*; Chun-Fu Richard Chen (MIT-IBM Watson AI Lab, IBM Research AI); Rameswar Panda (MIT-IBM Watson AI Lab, IBM Research); Leonid Karlinsky (IBM-Research); Rogerio Feris (MIT-IBM Watson AI Lab, IBM Research); Richard Radke (Rensselaer Polytechnic Institute)
[20] Improving Semi-Supervised Domain Adaptation Using Effective Target Selection and Semantics Anurag Singh (NSIT); Naren Doraiswamy (University of Michigan, Ann Arbor); Sawa Takamuku (Aisin Seiki Co., ltd.); Megh M Bhalerao (National Institute of Technology, Karnataka); Titir Dutta (Indian Institute of Science, Bangalore); Soma Biswas (Indian Institute of Science, Bangalore)*; Aditya Chepuri (AISIN AUTOMOTIVE HARYANA PVT. LTD); Balasubramanian Vengatesan (Aisin Automotive Haryana Pvt Ltd); Naotake Natori (Aisin Seiki Co., Ltd.)
[21] Efficient Pre-trained Features and Recurrent Pseudo-Labeling in Unsupervised Domain Adaptation Youshan Zhang (Lehigh University)*; Brian D. Davison (Lehigh University)
[22] Learning Unbiased Representations via Mutual Information Backpropagation Ruggero Ragonesi (Istituto Italiano di Tecnologia)*; Riccardo Volpi (Naver Labs Europe); Jacopo Cavazza (Istituto Italiano di Tecnologia); Vittorio Murino (Istituto Italiano di Tecnologia)
[23] PLM: Partial Label Masking for Imbalanced Multi-label Classification Kevin Duarte (University of Central Florida)*; Yogesh Rawat (University of Central Florida); Mubarak Shah (University of Central Florida)
[24] Batch Normalization Embeddings for Deep Domain Generalization Mattia Segù (ETH Zurich)*; Alessio Tonioni (Google); Federico Tombari (Google, TU Munich)
[25] Cluster-driven Graph Federated Learning over Multiple Domains Debora Caldarola (Politecnico di Torino)*; Massimiliano Mancini (University of Tübingen); Fabio Galasso (Sapienza University); Marco Ciccone (Politecnico di Milano); Emanuele Rodola (Sapienza University of Rome); Barbara Caputo (Politecnico di Torino)
[26] Fine-grained Angular Contrastive Learning with Coarse Labels Guy Bukchin (Penta AI, Tel Aviv University)*; Eli Schwartz (IBM-Research); Kate Saenko (Boston University); Ori Shahar (Penta AI); Rogerio Feris (MIT-IBM Watson AI Lab, IBM Research); Raja Giryes (Tel Aviv University); Leonid Karlinsky (IBM-Research)
[27] Weak Multi-View Supervision for Surface Mapping Estimation Nishant Rai (Stanford University)*; Aidas Liaudanskas (Fyusion Inc.); Srinivas Rao (Fyusion, Inc.); Rodrigo J Ortiz Cayon (Fyusion); Matteo Munaro (Fyusion Inc.); Stefan Holzer (Fyusion Inc)
[28] Training Rare Object Detection in Satellite Imagery with Synthetic GAN Images Eric Martinson (Soar Technology)*; Andy Gillies (Soar Technology); Bridget Furlong (Soar Technology)
[29] An Exploration into why Output Regularization Mitigates Label Noise Neta Shoham (Edgify)*; Tomer Avidor (Edgify); Nadav Tal-Israel (Edgify)
[30] One-shot action recognition in challenging therapy scenarios Alberto Sabater (Universidad de Zaragoza)*; Laura Santos (Instituto Superior Técnico Universidade de Lisboa); Alexandre Bernardino (-); José Santos-Victor (Instituto Superior Técnico - ISR); Luis Montesano (University of Zaragoza; Bitbrain); Ana C Murillo (Universidad de Zaragoza)
[31] A causal view of compositional zero-shot recognition Yuval Atzmon (NVIDIA Research)*; Felix Kreuk (Bar-Ilan University); Uri Shalit (Technion); Gal Chechik (Bar Ilan University)
[32] TAEN: Temporal Aware Embedding Network for Few-Shot Action Recognition Rami Ben-Ari (OriginAI)*; Mor Shpigel Nacson (Technion); ophir azulai (IBM-Research); Udi Barzelay (IBM ); Daniel Rotman (IBM Research)
[33] Introducing Meta-Verbs into Graph Convolutional Networks for Zero-shot Action Recognition Chinmaya Devaraj (Univ of Maryland)*; Cornelia Fermuller (University of Maryland, College Park); Yiannis Aloimonos (University of Maryland, College Park)
[34] Boosting Unconstrained Face Recognition with Auxiliary Unlabeled Data Yichun Shi (Michigan State University)*; Anil Jain (Michigan State University)
[35] Challenge - Adapting Multi-source Representations for Cross-Domain Few-shot Learning Ge Liu (Shanghai Jiao Tong University)*; Xiangzhong Fang (Shanghai Jiao Tong University)
[36] Challenge - Team jszx101
[37] Challenge - Team TJU-VisionGroup
[38] Challenge - Team NJUST-JDExplore
[39] Challenge - Team Yonsei-CVPR

Back to L2ID HomePage